

F108x Series

New-generation Al₂O₃ Standard Dewpoint Transmitter

· Instruction Manual ·

Experts in Compressed Air & Fluid Measurement

Fast · Accurate · Management

Preface

- Dear customer, thank you for choosing our products.
- This manual is a description of the use range, functions, installation and operation methods, troubleshooting, and maintenance of the product.
- The user must read this operation manual completely before using the device to properly use the product.
- After you read it, keep it in an accessible place for the next operational reference.

Notice

- Fix Instruments is not responsible for damage caused by unauthorized changes to the equipment without reviewing the operation manual or violating the provisions of this operation manual, and the instrument guarantee will be automatically voided.
- Fix Instruments is not responsible for incidental damage caused by transportation, equipment performance, or mishandling.
- Fix Instruments do not promise the suitability of this equipment for any application not described herein.
- Fix Instruments have tried to make the information in this manual correct. If you find any problems, you are welcome to contact us.
- The contents of this manual are forbidden to be reproduced, copied, or modified without permission.

Contents

Preface	3
Notice	3
1 Safety Instructions	5
1.1 General Safety Instructions	5
1.2 Storage and Transport Safety	5
2 Product Overview	7
2.1 Application	7
2.2 Features	7
2.3 Technical Data	7
3 Dimension & Installation	10
3.1 Dimension (in mm)	10
3.2 Installation Procedure	10
3.3 Electrical Wiring	12
4 Other Optional Accessories	13
4.1 Measuring Chamber	13
4.2 Service Kit	13
4.3 Calibration	13
4.4 Maintenance	14
5 Signal Output	15
5.1 Analog Output	15
5.2 Modbus Output	15
5.2.1 Communication Parameters	15
5.2.2 Storage Register Definitions	15
5.2.3 Process Data Format	15
5.2.4 Byte Order	16
5.2.5 Holding Register: Process Data Address Table	16
5.2.6 Holding Register: Communication Configuration Table	19
5.2.7 Coil Register Table	21
6 Warranty Terms	22
6.1 Warranty Period	22
6.2 Warranty Coverage	22
6.3 Warranty Certificate	22
6.4 Warranty Channels	22

1 Safety Instructions

1.1 General Safety Instructions

Danger!

Compressed air!

Any contact with rapid air leaks or pressurized parts of the compressed air system can lead to significant injury or even death.

- Never exceed the recommended pressure range.
- Make sure air tools & hoses are in good condition.
- Ensure the system is not under pressure when performing repair & maintenance.

/4\

Danger!

Power voltage!

Any contact with the electrical parts of the product can lead to significant injury or even death.

- Consider all electrical installation-related regulations.
- Any power connections must be disconnected when performing repair & maintenance.
- Any electrical work on the system is to be performed by authorized personnel only.

Attention!

Operating conditions!

Please check the permissible operating conditions. Any operation beyond these limits could potentially cause measurement failure or even damage the instrument or the entire system.

- Please review national standards and regulations during the preparation and installation process.
- The product is prohibited for use in explosive areas.
- Ensure the product operates within the allowed working conditions.

Caution!

Product malfunction!

Incorrect handling and improper transport could cause product malfunction.

- Unauthorized disassembly of the product is prohibited.
- Use correct and appropriate tools to operate to product.
- In case the product malfunctions, please stop using it and contact customer support.

1.2 Storage and Transport Safety

- Ensure the product is transported at a temperature of -20 ... +60 °C.
- It is recommended to use the product's original packaging for storage and transport.
- Make sure the product is stored at a temperature of -40 ... +80 °C.
- Avoid exposure to sunlight and UV rays.
- The storage humidity must be < 90 % and free of condensation.

2 Product Overview

2.1 Application

F108x Series is a sensor for detecting the dewpoint in industrial applications within the allowable range of technical data.

These technical data can be found in the **Technical Data**.

When the dewpoint of the measuring medium is below -40 °Ctd, the aluminum oxide sensor is the most accurate, responsive and long-term stable in comparison with other types of sensors. Meanwhile, it has excellent anti-pollution ability.

Revolutionary auto-calibration circuit design automatically compensates for circuit drift caused by temperature, contamination, and aging, providing long-term stability and high accuracy measurements.

Innovative temperature compensation algorithm and multi-point temperature compensation calibration, greatly improving the sensor's temperature drift and ensuring high-precision dew point measurement over a wide temperature range.

2.2 Features

- ✓ FixInst new generation ultra-fast response aluminum oxide sensor technology
- ✓ Application in dewpoint < -60 °Ctd:
 Desiccant dryers, nitrogen generators, industrial gases
- √ 10+ points of dewpoint calibration and multi-point temperature compensation provide accurate measurements up to ±2 °Ctd (Refer to Technical Data)
- ✓ Ultra-fast response time and outstanding long-term stability
- ✓ Anti-condensation, resistant to particulate contamination, oil vapor and most chemicals
- ✓ Excellent immunity to interference
- ✓ IP65 protection class, providing good protection even in harsh environments
- Provides comprehensive sensor setup, data transfer, software upgrades, and maintenance via Modbus RTU (RS485) interface and powerful service APP
- ✓ Calibration is valid for two years, reducing maintenance

2.3 Technical Data

Measurement Range	
Dewpoint	
F108A	-80 ··· +20 °Ctd
F108B	-110 ··· +20 °Ctd
Temperature	-40 ··· +100 °C

Accuracy	
Dewpoint (Air or Nitrogen)	
+20 ··· -60 °Ctd	±2 °Ctd
-60 ··· -100 °Ctd	±3 °Ctd
Temperature (Customizable)	
0 ··· +50 °C -40 ··· 0 °C & +50 ··· +100 °C	± 0.3 °C (Standard) ± 0.5 °C (Standard)
Response Time	
Dewpoint: 63 % [90 %], Reference: 20 °C, 1 bar(a), 4 L/	min
-50 → +20 °Ctd	20 sec [40 sec]
+20 → -50 °Ctd	1 min [3 min]
Power	
Measuring State	10 ··· 30VDC Max 1.5W @ 24VDC
Output	
Analog Output (Customized)	4 ··· 20 mA (3-wire)
Analog Resolution	0.002 mA
Analog Drift	0.01 % of span/°C
Analog Load	Max. 500 ohm
Digital Output	Modbus RTU (RS485)
Connector	5pin M12, Female
Operating Environment	
Operating Temperature	-30 ··· +70 °C
Storage Temperature	-40 ··· +80 °C
Relative Humidity	0 ··· 95 %RH
Sample Gas Flow Rate	>1 L/min
Pressure	0 ··· 5 MPa(a)
	0 ··· 35 MPa(a) (Option)
Other	
Process Connection	ISO G1/2" thread (Standard) 3/4" - 16 UNF thread (Customized)

	5/8" - 18 UNF thread (Customized)
Protection Code	IP65
Housing Material	SUS304
Sensor Filter	Stainless steel sinter filter (Filtration class 70 µm)
EMC	Compliant with IEC 61326-1

3 Dimension & Installation

3.1 Dimension (in mm)

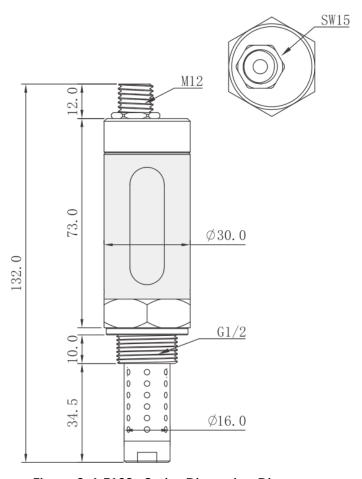


Figure 3-1 F108x Series Dimension Diagram

3.2 Installation Procedure

The following situations are recommended for installation with measuring chambers:

- A: Risk of water splashing on the sensor
- B: High process temperature
- C: Required to install or remove measurement devices in operating, pressurized condition

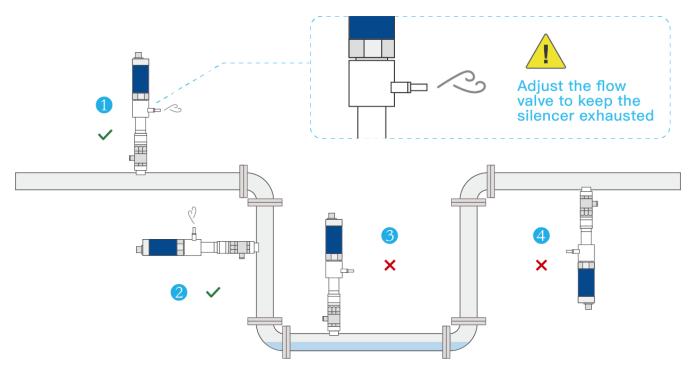


Figure 3-2 Installation with Measuring Chambers

The following situations are recommended for installation directly on the pipe:

A: The gas in the pipeline cannot be exhausted directly (for example: dangerous gases or expensive process gases)

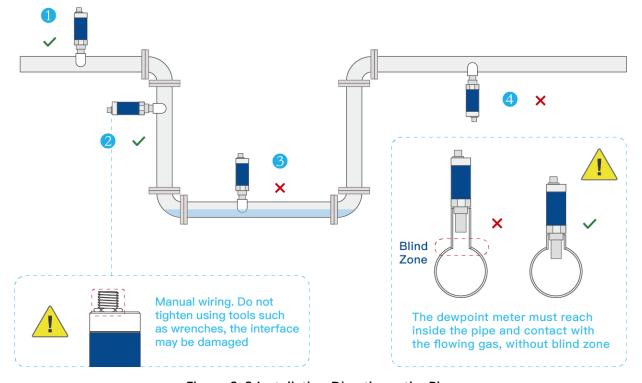


Figure 3-3 Installation Directly on the Pipe

3.3 Electrical Wiring

Figure 3-4 Electrical Connection Diagram

Table 3-1 Pin Definition

Connector	Pin1	Pin2	Pin3	Pin4	Pin5
Signal	RS485 A/D+	RS485 B/D-	4~20mA	V+	V-
FixInst Cable Color	Brown	White	Blue	Black	Grey

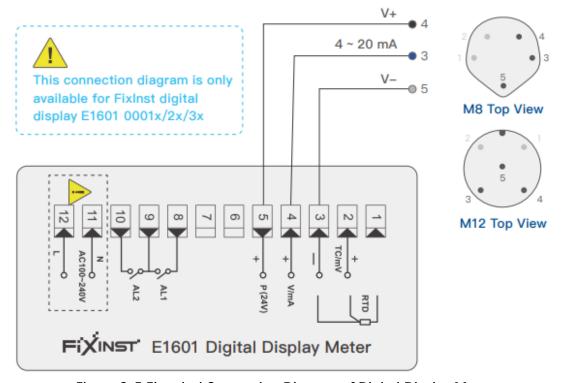


Figure 3-5 Electrical Connection Diagram of Digital Display Meter

4 Other Optional Accessories

4.1 Measuring Chamber

Many different types of measuring chambers such as quick connector type, by-pass type, dryer-specific type and high pressure type. For more information, please contact local distributor or manufacturer.

4.2 Service Kit

The service kit is used to connect the sensor to a personal computer. Parameters of the sensor, such as analog output range, alarm threshold, units and etc. can be modified via the service kit.

4.3 Calibration

The product is factory calibrated and the calibration certificate is attached to the product. Since the measurement accuracy of the product is affected by the on-site environment (oil, high humidity, or other impurities can affect the accuracy), we recommend the user perform calibration once a year. Calibration service is not covered by the product guarantee. Please contact the manufacturer in case calibration is required.

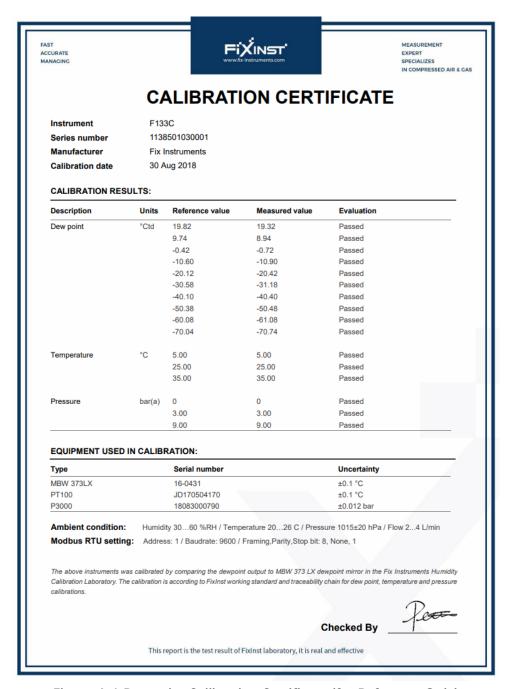


Figure 4-1 Dewpoint Calibration Certificate (for Reference Only)

4.4 Maintenance

Please check the sinter filter regularly. If contamination of the sinter filter is found, it is recommended to replace it promptly. Contact the manufacturer for details.

Caution!

Wet or contaminated sinter filter or sensor will result in longer response time or even incorrect measurement result.

5 Signal Output

5.1 Analog Output

F108x Series come standard with a $4 \sim 20$ mA output. 4 mA corresponds to the lowest dewpoint, 20 mA corresponds to the maximum dewpoint of the model (see **Measurement Range** for standard models, non-standard models should refer to the factory **Calibration Certificate File** as the standard). Output channels can be modified by service kit or RS485.

5.2 Modbus Output

F108x Series support RS485 communication.

5.2.1 Communication Parameters

The factory setting parameters are as follows.

• Address: 1

Baud rate: 9600

• Data length: 8, Parity bit: None, Stop bit: 1

Response timeout: 1 second

• Response delay: 0 ms

• Frame interval: 7 characters

5.2.2 Storage Register Definitions

Logical Channels, Data and Holding Registers

- Holding register data can be read with Modbus instruction 0x03
- Available Modbus Instruction 0x06 Write Single Holding Register, 0x10 Sequential Write Multiple Holding Registers
- Available Modbus Instruction 0x05 Write Coil Registers

5.2.3 Process Data Format

Supports two data types: IEEE 754 floating point and unsigned integer.

Table 5-1 Floating Point Format

Number	IEEE 754	Regist	er N	Register N + 1		
(with decimals)	Floating Point	High	Low	High	Low	
123.4	0x42F6CCCD	0xCC	0xCD	0x42	0xF6	

Table 5-2 Unsigned Integer

Number	Number	Regist	er N	Register N + 1		
(decimal system)	(hex system)	High	Low	High	Low	
123456789	0x075BCD15	0xCD	0x15	0x07	0x5B	

5.2.4 Byte Order

The format of the data is little-endian, with the least significant bit transmitted first.

• 32 bit: CD AB

64 bit: GH EF CD AB

5.2.5 Holding Register: Process Data Address Table

Register Address	Data Type	Byte Length	Data	Unit	Read/ Write	Applicable Flow meter Model
0	FLOAT_L	4	Temperature	°C or °F	R/W	① Single-point temperature calibration when writing
2	FLOAT_L	4	Relative Humidity	%RH	R	
4	FLOAT_L	4	Pressure Dewpoint	°Ctd or °Ftd	R/W	① Single-point dewpoint calibration when writing
6	FLOAT_L	4	Atm. Dewpoint	°Ctd or °Ftd	R	
8	FLOAT_L	4	Mixing Ratio	g/kg	R	
10	FLOAT_L	4	Absolute Humidity	mg/m³	R	
12	FLOAT_L	4	Absolute Humidity	g/m³	R	
14	FLOAT_L	4	Moisture (Weight)	PPMw	R	
16	FLOAT_L	4	Moisture (Volume)	PPMv	R	
18	FLOAT_L	4	Enthalpy	kJ/kg	R	

Register Address	Data Type	Byte Length	Data	Unit	Read/ Write	Applicable Flow meter Model
20	FLOAT_L	4	Line Pressure (abs)	Pa, hPa, kPa, MPa, mbar, bar, PSI	R/W	① Single-point pressure calibration when writing
22	FLOAT_L	4	Water Activity (aw)		R	
24	FLOAT_L	4	Gas Density	kg/m3	R	
26	FLOAT_L	4	Pressure (Normalize to 20°C)	Pa, hPa, kPa, MPa, mbar, bar, PSI	R	
28	FLOAT_L	4	Moisture (Volume) (Normalize to 20°C)	PPMv	R	
30	FLOAT_L	4	Gas Density (Normalize to 20°C)	kg/m3 R		
32	FLOAT_L	4	Dewpoint single- point calibration	°Ctd or °Ftd	R/W	① Write "0" to clear single-point dewpoint calibration
34	FLOAT_L	4	Temperature single- point calibration	°C or °F	R/W	① Write "0" to clear single-point temperature calibration
36	FLOAT_L	4	Pressure single-point calibration	Pa, hPa, kPa, MPa, mbar, bar, PSI	R/W	① Write "0" to clear single-point pressure calibration

Register Address	Data Type	Byte Length	Data	Unit	Read/ Write	Applicable Flow meter Model
38	FLOAT_L	4	Moisture (Volume) (Normalize to Atm.)	PPMv	R	
40	FLOAT_L	4	Atm. Pressure	Pa, hPa, kPa, MPa, mbar, bar, PSI	R/W	Default: 1.01325 bar or 1013.25 hPa
42	FLOAT_L	4	Gauge Pressure	Pa, hPa, kPa, MPa, mbar, bar, PSI	R	= Addr 20 (Line Pressure) – Addr 40 (Atm. Pressure)

Note:

The unit "oC or oF" and the pressure unit are dependent on the setting of the dewpoint meter.

Note:

① This register address can be used to write single-point calibration, and support single-point calibration of "temperature", "pressure dewpoint" and "working condition pressure"

For example: the current measured pressure dewpoint value is 10 °Ctd and needs to be adjusted to 12 °Ctd. There are two methods to achieve this:

- 1. Write 12 directly to register address 4. The deviation 2 will be calculated internally in the dewpoint meter and written into the register address 32 automatically. To clear the single-point calibration value, write 0 to register address 32.
- 2. First manually calculate the adjustment value 2 and write it directly into register 32

An example write command is as follows:

Floating point number v=123.4 its corresponding hex 0x42F6 CCCD. write this value to device address 1, holding register address 36 (pressure single point calibration offset)

Send Modbus commands: 01 10 0024 0002 04 CCCD 42F6 EE0D

01: Device Address

10: Function code 16 in hexadecimal

0024: Keep register address 36 in hexadecimal

0002: Number of holding registers to be written

04: Number of holding register bytes (0x42F6 CCCD total 4 bytes)

CCCD: Floating point low 16 bits 42F6: Floating point high 16 bits

EE0D: CRC

Device Response: 01 10 0024 0002 01C3

01: device address

10: Function code 16 in hexadecimal

0024: Keep register address 36 in hexadecimal

0002: Number of holding registers already written

01C3: CRC

5.2.6 Holding Register: Communication Configuration Table

Holding Register Addr	Data type	No. of byte	Unit	Contents	Default	Read / Write
50	UNSIGNED	2		Restart device (Write "1" to restart device)		Write only

51	UNSIGNED	2		Device address (1247)	1	Read / Write
52	UNSIGNED	2	bps	Baud rate: 12 = 1200 bps 24 = 2400 bps 48 = 4800 bps 96 = 9600 bps 144 = 14400 bps 192 = 19200 bps 384 = 38400 bps 560 = 56000 bps 576 = 57600 bps 1152 = 115200 bps	96	Read / Write
53	UNSIGNED INT	2		Parity $0 = \text{None}$ $1 = \text{Odd}$ $2 = \text{Even}$	0	Read / Write
54	UNSIGNED INT	2		Stop bit 1: 1 bit 2: 2 bit	1	Read / Write
55	UNSIGNED INT	2	ms	Response Time Out: 0255 ms 1 ms/step Value range: 0255	0	Read / Write

Note:

These settings will take effect after writing a "1" to the holding register address 50. Then Modbus master must change communication settings accordingly in order to communicate with the slave

5.2.7 Coil Register Table

Coil Register Addr	Data type	No. of byte	Unit	Contents	Default	Read / Write
0	UNSIGNED	2		Restart Modbus Communication Read: Always 0 Write: 0x0000 = Do Nothing 0xff00 = Restart	0	Read / Write

6 Warranty Terms

Dear Customer:

Thank you for choosing FixInst products. We have always been committed to providing our customers with high-quality, high-performance instrumentation products to meet your needs in a variety of application scenarios.

In order to ensure your satisfaction after purchasing the product, please read the following after-sales terms and conditions carefully, so that you can correctly and efficiently apply for the warranty service when needed.

6.1 Warranty Period

12 months from product shipment.

6.2 Warranty Coverage

1. Warranty period due to the product's own problems caused by performance failures, confirmed by the seller's test, will provide free maintenance services; human misuse or due to the site of the product working conditions and the product type does not match the damage caused by the exceptions.

The following are not covered by warranty:

- ① Product damage caused by force majeure factors (such as natural disasters, etc.).
- Products due to natural wear and tear, rough handling caused by the appearance of damage, scratches or wear (such as impact caused by the loss of paint, surface bumps, etc.).
- 3 Damage caused by disassembling the product without the Company's consent or unauthorized changes in the use of the product.
- 4 Damage to the product caused by repair or modification not authorized by the company.
- ⑤ Damage caused by improper use of the product by the user or operation in violation of the instructions.
- 6 Products purchased from unauthorized sources.
- 2. For non-warranty or non-warranty product failure, we will provide paid repair services, the specific cost depends on the actual situation.

6.3 Warranty Certificate

Users are required to provide valid proof of purchase (e.g., invoice, receipt, etc.) and product serial number when applying for warranty service.

6.4 Warranty Channels

Users can apply for after-sales warranty service by filling out our after-sales treasure system or contacting customer service personnel.

https://www.fix-instruments.com/h-col-143.html

Experts in Compressed Air & Fluid Measurement

Fix Instruments (Shenzhen) Co., Ltd.

A: 2/F,Middle Block, Building B, TG Science Park, No. 2 Luozu Industrial Avenue, ShiYan Subdistrict, Baoan District, Shenzhen, GuangDong, China

M: sales@fix-instruments.com

P: 0755-2359-1123

